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ABSTRACT 

In th is  note  we will ident i fy  the  divisor  of any fixed d i rec t ional  der iva t ive  

of the Riemann theta function evaluated along the theta divisor with the 
divisor formed from a g -  1 dimensional subspace of holomorphic one-forms 
from the underlying Riemann surface. 

I n t r o d u c t i o n  

The classical Riemann vanishing theorem can be viewed as identifying the divisor 

of the theta function O(z, ~) associated to a compact Riemann surface X with the 

divisor of the determinant of holomorphic one-forms from X, evaluated on X g. In 

IF] Farkas shows that  any partial derivative ae Cz f/) of the theta function when Oz j  ~, ' 

evaluated at z = ~ p ,  the vector of Riemann constants corresponding to the base 

point P,  does not vanish identically in P. Further, it is shown that  the divisor of 

~-~z°i (K:p, f~) coincides with the divisor of a certain Wronskian corresponding to a 

g - 1 dimensional subspace of holomorphic one-forms. 

In this note we will extend Farkas's theorem by identifying the zero set of 

any directional derivative of the theta function evaluated at any point in the 

theta divisor with the divisor of a determinant formed from a g - 1 dimensional 

subspace of holomorphic one-forms. 

Riemann's theorem is proved by studying certain integrals involving O(z, ~) 
restricted to an image of X in its Jacobian variety J(X),  with the integration 

being over a canonical dissection of X. This proof can be found in many texts, 

such as [Fal], IF-K], or [Mu]. Essentially, the proof is an application of the 
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argument principle. Farkas modifies this proof by studying the integrand given 

by restricting the theta function to n times the image of X in J(X), for any integer 

n. Our result comes from studying the limiting behavior of analytic torsion, a 

function defined on J(X) when the Jacobian is viewed as the moduli space of 

degree zero line bundles on X. For completeness, we shall present a review of 

the problem of analytic torsion for degree zero line bundles on Riemann surfaces 

and state the main result derived in [J], which is a precise evaluation of analytic 

torsion in terms of theta functions and related quantities. It is through the study 

of this evaluation that we are able to derive the result presented in this paper. 

The author gratefully acknowledges Professor H. M. Farkas for sending [F], 

which served as motivation for this work, and for further interest and encourage- 

ment. 

1. Preliminary Results 

Let X denote a compact Riemann surface of positive genus g, marked by a canon- 

ical basis of its first homology group H~(X, Z), which we write as {Aa ... Ba}. 

Dual to this marking is a basis of holomorphic one-forms {~j}~, and a corre- 

sponding period matrix 12 formed by defining 12ij = fBj (i. Let J(X) be the 

Jacobian variety of X, realized as the g-complex dimensional algebraic torus C a 

modulo the lattice L(X) generated by Z a and 12. Zg. The Abel-Jacobi map from 

the space of divisors on X to J(X) will be denoted as Cp where P is the base 

point. 

The theta function with characteristics a, # E R a is the entire function on C a 

defined by the series 

(1) 0 [~ ]  ( z , ~ ) =  y ~  exp(Tri'(n + a)f/(n + a ) +  27rit(n + oO(z + 13)). 
nEZg 

If both o~ and # are zero we shall write (1) as O(z, ~). Basic properties of this 

remarkable function are given in the references [F-K], [Fail and [Mul. For com- 

pleteness, let us briefly review some main results we shall need. If n, m E Z g 

then 

(2) O [ ~ ] ( z + m + 1 2 n , 1 2 )  

= exp(-Tr i tn~n - 21ritnz + 2~ri(tma - tnfl))O [~ ]  
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A direct calculation verifies that 

where y = Ira(z) and Y = Ira(a), is a well-defined function on J(X).  In other 

words, (2) is a holomorphic section of a degree zero line bundle over J(X),  and 

(3) represents the square of the norm of this section. 

Even though (1) is not well-defined on J(X),  by (2) we see that the theta 

function O(z, 12) has a well-defined divisor, which we denote by O. By Riemann's 

vanishing theorem ([F-K], page 298), there is a distinguished divisor class K: of 

degree g - 1 such that 0(~, f~) = 0 if and only if 

g-1/pp~ 
(4) ( = Z  ( + E P  modL(X)  

1 

for points P1. . .  Pg-1 in X. Further, the order of vanishing of O(z, ~t) at z = 

is equal to dimHO(X,K ® O(-P1 . . . .  Pg-1)), where K denotes the canoni- 

cal bundle on X. In other words, the order of vanishing equals the dimension 

of the space of holomorphic one-forms with zeros at P1, . . . ,  Pa-1. For generic 

P1 .-. Pg-1, this space has dimension one. The point £~p in J (X)  is called the 

vector of Riemann constants with respect to the base point P. 

Let X be a unitary character of Hi(X, Z). We shall use J (X)  to parameterize 

the space of unitary characters of Hi(X, Z) by the map ¢, which we define by 

(5) u = ¢ (x )  = + 8 ,  

where 

1 1 
(6) aj = ~ i l o g x ( A j ) ,  ,8 i = ~-~ilogx(Bj). 

Throughout we shall use u = ¢(X). The degree zero line bundle associated to X 

shall be written as £u. An element of H ° ( X , K  ® £u) is a Prym differential, a 

holomorphic one-form on the universal cover of X with multiplicative behavior 

(6) in the group F which uniformizes X in its universal cover (see [F-K], page 

119). 
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2. S t a t e m e n t  o f  t h e  M a i n  R e s u l t  

By the Riemann-Roch theorem ([F-K], page 127), d i m H ° ( X , K  ®/~u) = g - 1 

if u ¢ 0 and d i m H ° ( X , K )  = g since u = 0. Assume that u is not zero and let 

{~ t } l  g-1 b e  a basis of H°(X,  K ® £u). In [J] the following theorem is proved. 

THEOREM: Let P, P1 , . . .  ,Pg-1 be generic points on X and set QI = P,  Qi = 

Pj-1. Let ~ = - ~ a o  + 19o be as in (4) and u be as defined in (5). Then, the 

function F(u)  defined by 

i i (7) F(u)= det((r/,,,r/,,)) Idet(¢~(Q.i))l" 
I ~  ~ " c le f (Y)  " 

is independent of the points P and Pi" 

[e [ - '~(")  + so 
I. # ( " ) -  #o ] ( ° 'a) l :  

I exp(-~'-0Y-0)~ ~(e)c~(P)l 2 
1 

The function F(u)  is non-zero on 

J (X) \{0}  with a second order zero at u = 0. Further, 

02 F . . 02 F 
(o) = -~-_~ (o) = o Ou~ 

and 

02F 
(8) OuiOui = ( y - l ) i i .  

Another way to summarize (8) is to say that near u -- 0, 

1 
F(u) = ~ 'uY-1fi + o(]u]2). 

Although we do not use this fact, we note that in [J] the function F(u) is the 

analytic torsion on X relative to any metric # on X. For the sake of completeness, 

let us define the significance of (7) and (8). 

Let tt denote a positive (l, I) form on X which gives a metric on X. Define 

real operators 

d=O+~ and d* = ~ ( T I  .o- o~), 
so that  

d*d = ~ 0 0 .  

Relative to the metric # on X, the Laplacian Aj, is defined by 

d*df = (-1A~,f) /z .  
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An eigenfunction of the Laplacian f with eigenvalue ~ is a smooth function on 

X for which the following equation holds. 

A . f  = Af. 

This notion extends to sections f ,  of the degree zero line bundles E. .  The 

Laplacianacts  on smooth sections o f £ u  with a discrete spectrum, which we 

shall denote by 

o  0(u) . . . .  

The spectral zeta function associated to this data is defined by 

(9) ¢ . ( s , u ) =  -s  
x,,(u):go 

By Weyl's law, (9) is a convergent holomorphic function of s for Re(s) > 1. In 

[M-P] it is shown that (9) has a meromorphic extension to the complex plane 

that is holomorphic at s = 0. With this, the analytic torsion on X relative to 

the metric/~ is defined by 

(10) d e t a . ( u )  = 

In [J] the analytic torsion d e t ~ , ( u )  is studied as a function on J ( X )  through 

the map (5). If u # 0, ,~0(u) > 0 and ,~0(0) = 0. So, in the case u = 0 the sum 

(9) omits the eigenvalue zero, and one uses the notation d e t * ~  to denote the 

special value (10). 

In [31, equation (7) is derived with the function F(u) given by 

vol, X 
F(u) = detAt,(u ) • (47r2det.At ' ). 

Equation (8) is simply the Hessian of ,~0(u) at u = 0. 

In this note, we shall study (7) for a family of line bundles Z:td where t is 

complex and approaches zero and d E pg-x is fixed. In other words, we will 

compute the directional derivative of F(u) at u = 0 in the direction d through 

(8) and through (7). Our main theorem, and title of the paper, is the following 

result. 
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THEOREM 1: For any non-zero dl,d 2 E c,g and points PI .. .Pg-1 on X, the 

following identity holds. 

(11) 

g 
E 08 I 

-~j(~)dj det [d ~ I~(P, 1. . .  t~(P,_~ )] 

1 

det I¢(G-,)] 

The point ~ is given by 

~ = ~_~ ]p ~ + ]Cp m o d L ( X )  

and the matrices in (11) have been expressed by indicating eadl of the g columns. 

After presenting our proof of Theorem 1, we shall establish some corollaries of 

the result and show how this extends the theorem of Farkas IF]. Also, since (11) 

is trivial for g = 1, we assume g :> 2. The formula (11) does appear, without 

proof, in [Fa2]. As we shall see, and as was noted in [F], one of the key difficulties 

is the non-vanishing of any directional derivative of the theta function. 

3. P r o o f  o f  the  t h e o r e m  

The key lemma is the following statement. 

LEMMA 1: Let d be a l~xed point in p g - l .  Then, 

(12) lim H°(X,  K ® £t~) = {~aj¢jtHajdi = 0} 
t---)0 

As previously stated, for any non-zero u, dim H°(X,  K ®/2,,) 

the case when u = 0), d i m H ° ( X , K )  = g. Lemma 1 identifies 

one subspace of H°(X,  K)  obtained by taking the linfit as t 

of H°(K ® £td) for fixed nonzero d E p g - l .  Note that one 

= g - l a n d ( i n  

the codimension 

approaches zero 

can identify the 

space of codimension one subspaces of cg  with pg-1.  Lemma I gives an explicit 

bijection between this pg-1 and the space of directions d from 0 in J (X) ,  which 

is also a p g - l .  The identification of codimension one subspaces of H°(X,  K)  and 

directions from 0 in J (X)  given in (12) will take place in the proof of Lemma 1. 

Since such an identification is not canonical, we will let the proof of (12) guide 

us to the natural bijection given in (12). 
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Proof'. For any u E J(X)\{0) ,  let 

/; (13) f ~ ( x )  = ~l~(x) exp(-2~ri'a ~) 

for any non-zero ~ E H ° ( X , K  ® £~). The form f~ is a section of K ® £u, 

where L~, is the bundle of degree zero on X associated to the quasi-character (i.e. 

non-unitary) defined by ~ ( A i )  = 1 and ~ ( B i )  = exp(27riui) .  As such, we can 

make sense of the integrals 

(14) /A~ £ 

for any A i.  In other words, for each A i and flu • H°(X,£~ ® K), (14) is a well- 

defined number. The reason for this is because the quasi-character )~ is trivial 

along Ai, so the integral (14) is well-defined. By Riemaun's bilinear relations, 

(14) is zero for all j only if fu, hence r/u, is the zero section. 

For any non-zero u, take any basis of H°(X, K ®/:~) and use (13) and (14) to 

define a map 

(15) J(X) \{0}  C(g - 1,g) 

where G(g - 1, g) is the Grassman of ( g -  1)-dimensional subspaces of a g-complex 

dimensional vector space. As stated above, the space G(g - 1,g) is isomorphic, 

although not canonically, to pg-1. Later, we shall choose an isomorphism, but, 

for now, let us keep the map (15) as defined without changing the image manifold. 

Let U denote a neighborhood of 0 in J(X) such that U \ {0} is conformally 

equivalent to D* x pg-1, where D* denotes the punctured disc in C. Choose 

coordinates t and d where (t,d) E D* x pg-1 which parameterize U \ {0} in 

J(X),  and let ~t be the map (15) viewed as a function of t E D* with d E Pg-1 

being fixed. We shall write u E U as u = td. For any non-zero u G J(X),  one 

can choose a basis of H°(X, g ® £:u) which varies holomorphically in u (see [J], 

(3.3) for an explicit construction using the prime form). For such a basis, the 

divisors vary holomorphically in u, hence holomorphically in t for fixed d. Choose 

a basis {yu} that varies holomorphically in u, and consider the family of maps 

from D* into X obtained by composing ~at with the map which takes the divisor 

of Ou. Let us use the same symbol ~t to denote this map. Thus, ~t can be 

viewed as a family of maps of D* into X. Since g _> 2, any such map extends to 
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a map of D into X (see [La], page 40; this uses the hyperbolicity of X which is 

guaranteed because g >_ 2). Thus we can extend ~t for fixed d E pg-1 to t = 0 as 

follows. By extending the family of maps from D* into X, we obtain the divisors 

of holomorphic one-forms in the limit space 

lim H°(X, K ® £td). 
t---*0 

This, in turn, determines the A-periods of elements of this codimension one 

subspace of H°(X, K). Since any element of H°(X, K) is determined by its A- 

periods, the map ~0 is well-defined and determines, for fixed d, the limit subspace 

of holomorphic one-forms defined in the left-hand-side of (12). 

In summary, for any direction d E p0-1 away from zero in J(X),  if u ap- 

proaches zero along the complex line given by d, the space H°(X, K ® £~) con- 

verges to a well-defined g - 1 complex dimensional subspace of the g-complex 

dimensional space H°(X, K), which is determined by limiting values of the A- 

periods (14). 

To finish the proof of Lemma 1, we shall choose coordinates in order to explic- 

itly describe the map 

~o : pg-1 ..., G(g - 1,g). 

Realize G(g - 1,g) as pg-1 by the following map: if A E G(g - 1,g), define 
g 

d E pg-1 by requiring ~_,ajd i = 0 for all (ai) E A. The map ~0 then becomes a 
1 

map of pg-1 to itself. Riemann's theorem tells us that the Abel-Jacobi map Cv 

from X g to J (X)  is generically a bijection ([F-K], page 294 and 298). Combining 

this with the Implicit Function Theorem ([K], page 43) we conclude that for 

generic t E D* q0t is of degree one, hence so is ~0. Relative to the above realization 

of G(g - 1,g) as pg-1, Lemma 5.1 of [J] proved that ~00 acts as the identity for 

any d of the form ((I(P) ,-- .  , (g(P))  for P E X. By varying P,  these vectors 

form a basis of Cg. Thus, ~0 is the identity. 

This completes the proof of (12). | 

Let d 1 and d 2 be non-zero points in C a and consider 

(16) lim F( td l )  
~-o F(~d 2) 

where F(u)  is defined by (7), and t is complex. Equation (8) implies that the 

limit (16) exists and equals 

(17) t d l y - : d l  
t d2 y -  l t]2 " 
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By (8), we have that the right hand side of (7) vanishes to order two, and that 

comes from the theta function. In fact, 

( i s )  
0[ ] I - a  + ao ao [~d.12 

lim 3 -  30 I ~  t-.o [u] 2 =exp(_27r taoyao)  1 °ziktdd / 11 
u=td 

It is important to note that (lS) (generically) involves first derivatives of the 

theta function. If {~/~} denotes a basis of (12), with u = d, define 

(19) [det(t/~(Pi))12 (t dY- '  d), 
gd(Pl, . . .  , 5 - 1 )  = det((T]~,~'>) 

for fixed (generic) P1, . .  Pg-, in X. Combining (17), (18) and (19), equation (7) 

becomes 

(20) 

9 
Oo {~.,~d 112 

1 gd ' (P] , . . . ,  Pg-i) 
g • 

IE 1 °~-~[(~)~12 gd,(Pl ...,Pa-,) 

It is easy to show that (19) is independent of the basis {r/i } of (12) that has been 

chosen. Let us choose a specific basis, namely (th) = A(¢j) where A is the (g - 1) 

by g matrix 

(21) 
i2 - d l  0 ) 

"*. 

0 - d l  

and {ffi} is the basis of H°(X, K) dual to the given marking on X. With this, in 

order to simplify (19), we need to evaluate 

det((T/~, ~/~t)) ----- d e t ( r A Y s )  

and 

Idet(t/~(Pi))l = Idet(A(¢i(Pj)))l. 

These expressions are evaluated by the following Lemmas. Sketches of the proofs 

are provided. Detailed proofs are given in [J], section 5. 
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LEMMA 2: 

(21) det(t AY,4 ) = [dl [2("-2) ( detY)(t  d y - l  d) 

Proof: Let .4 be the matrix with first row equal to tdY-1 and row j given by 

the (j - 1)st row of A. Then, 

det(t,YiYA) = ( t~y-1 d)det( tAy-1 A) 

= Idet,412detY. 

By expanding by minors along the first row of A we obtain 

det,4 = ( -d , )g -2 ( tdy - ld ) ,  

which gives the desired result. | 

LEMMA 3: 

(22) det( A( (i( Pj ) ) ) = -d~ -2 det[d[( ( P1) . . . ]((Pa-1)]. 

Proof'. Expand (22) by minors along the bot tom row and use (22) as an induction 

hypothesis, with the case g = 2 being trivially true. | 

Combining (21) and (22) we have 

(23) gd(P1... Pg-1) = ]det[d[((P1).. .  ]((P~-l)]12(detY) -1, 

which completes the proof of Theorem 1. 

To summarize, the proof of Theorem 1 is as follows. By (8), the ratio of 

directional derivatives of F(u) at zero along the directions d ~ and d ~ (16) is given 

by the ratio of the limit of (7). Specifically, we obtain 

g 
00 f ~ d  112 t d l y - l d i  ]~_,~-~i~ J jl 1 ga2(P1, . . . ,Pg-l)  t d l y - l d l  

- -  . 

(24) ,d2Y-,d  

1 

We have used that the vanishing property of F(u)  near u = 0 as given by (8) 

implies (24) involves the first derivative of the theta function. The above Lemmas 

evaluate g~ as given by (23). By dropping the absolute values, we obtain a non- 

zero holomorphic map of modulus one from pg - I  to C given by the ratio of the 

two sides of (11) keeping d 2 fixed and varying d 1. This map must be constant 

which is easily seen to be one by taking d 1 = d 2. 
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4. Corol lar ies  o f  the  m a i n  T h e o r e m  

If we let points P1 . . .  Pg-1 coalesce to a point P we obtain 

COROLLARY i :  

(25) 

where ((h) 

6.. .  ¢~- 

g 
oo e E Xd 1 

E -¢~7,~t P) ~ det[d~l¢(p) 1¢0-2)(p)] 
1 - -  " ' "  

g ~[~(Jcp)~ det[~l((P)... [¢('-~)(P)l 
I 

denotes the column of h derivatives of the holomorphic one-forms 

Proof'. This follows immediately from Theorem 1 except for the fact that the 

left-hand-side involves the first derivatives of the theta function. For this, note 

that if points Pj coalesce to a single point, (7) shows that during this process the 

term 

1 

vanishes to order g. If d ~ = ~(P) and d 2 is fixed, this vanishing in (24) implies 

O0 2 

does not vanish identically in P. | 
g 

00 d COROLLARY 2: ~ ~iT~j (]Cp) j vanishes at the Weierstrass points of the codimen- 
1 

sion one subspace of holomorphic one-forms given by { ~  aj~j I T  ajdj = 0}. 

If we take d ~ = ~(P) in (11) and let the points coalesce we obtain 

COROLLARY 3: In multi-index notation, 

22 ~(~P)¢'(P) 
I,l=~ w(¢)(p) 

oo ~v- x d . . .  

where W(f)(n) denotes a Wronskian. Thus, the zeros of 

OgO I 
(26) Z ~ z  I (/C')~ (P) 

IIl=g 

are the Weierstrass points of X. 

Equation (20) and the following assertion axe given on page 31 of [Fal I. 
In the special case g = 2 we have the interesting relation 

oqO 0/9 (2(P) 
Yracb-ffz (~:plbT;z (~:p) = 6(P) 
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